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Abstract
Eigenfunctions of the whispering-gallery type in elliptic cavities are considered.
Asymptotic expansions for resonances are derived from the uniform asymptotic
expansions of Mathieu functions and modified Mathieu functions constructed
by applying the Langer–Olver method. These asymptotic expansions are
improved by including exponentially small terms which lie beyond all orders
of the perturbative series and can be captured by carefully taking into account
Stokes’s phenomenon. A classification of resonances along the four irreducible
representations of C2v (the symmetry group of the elliptic cavity) is provided,
and the splitting up of resonances is then understood in connection with the
breaking of O(2)-symmetry (invariance under any rotation).

PACS numbers: 0545M, 4120J, 4320B, 4640C

1. Introduction

Whispering-gallery phenomena are connected with the propagation of waves within closed
convex regions and have been well known since their observation, at the inside surface of
the dome of St Paul’s Cathedral in London, by Herschel and Airy. They were described by
Rayleigh qualitatively in 1887 [1] and understood by him quantitatively in 1910 [2]. In a
convex cavity, whispering-gallery modes are very particular resonant modes that exist only
for certain values of the resonance frequency. They are concentrated in the neighborhood
of the boundary of the cavity, in a layer whose thickness is proportional to k−2/3 with k the
wavenumber, and are exponentially damped outside this layer [3].

In this paper, we consider the whispering-gallery modes of an elliptic cavity (i.e. an infinite
cylinder of elliptic cross section) and the associated resonances. We are mainly concerned with
their high-frequency asymptotic behaviour (k → ∞). We only consider the Dirichlet boundary
condition on the surface of the cavity. Furthermore, we assume that the problem is invariant
under any translation along the cylinder axis and thus reduces to a two-dimensional problem.
Such a problem can then be encountered (i) in electromagnetism, in the study of microwaves
in a metallic elliptic cavity, (ii) in acoustics, in the study of ultrasonic waves in a soft elliptic
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cavity or in the study of the transverse vibrations of a stretched elliptic membrane held at its
boundary, and (iii) in quantum mechanics, in the study of a quantum particle in an elliptic
billiard.

In a circular cavity, the determination of whispering-gallery modes and of the associated
resonances is an easy task because the Helmholtz equation can be solved exactly by separation
of variables. From their high-frequency asymptotic behaviours, it is possible to guess and then
to construct the asymptotic expansions for the whispering-gallery modes of an arbitrary convex
cavity and for the corresponding resonances (see chapter 7 of [3]). Such expansions are very
useful and could be used in the context of the elliptic cavity. Unfortunately, because of their
purely perturbative nature, the asymptotic expansions for resonances cannot take into account
subtle effects associated with corrective terms lying beyond all orders of the perturbative
series. In the context of the elliptic cavity, they do not include the non-perturbative corrections
(exponentially small terms) corresponding to the spitting of resonances which occurs in the
transition from the circular to the elliptic cavity and which can be explained in terms of the
symmetry breaking O(2) → C2v.

In order to derive the high-frequency asymptotic behaviour of the whispering-gallery
modes and of the associated resonances and to quantitatively understand their splitting, we
prefer a method which presents analogies with the approach previously developed by us in
our study of scattering by an elliptic cylinder [4] and which permits us to directly use some
of the results obtained in that context. We construct the resonant modes of the elliptic cavity
in terms of Mathieu and modified Mathieu functions and we classify them along the four
irreducible representations A1, A2, B1 and B2 of the symmetry group C2v of that cavity [5].
This is an easy task in this geometry because the Helmholtz equation is separable in elliptic
coordinates. Rather than follow the traditional method of analysis [6], and adopt periodic
boundary conditions, we assume that the angular coordinate lies in the interval ]−∞,+∞[ and
therefore we solve the Helmholtz equation in a region of an infinitely sheeted Riemann surface.
The determination of the radial part of the resonant modes (modified Mathieu functions) is
then an eigenvalue problem, which is analogous to the determination of the Regge poles in
the scattering problem. When we impose periodicity conditions on the angular part of the
modes (Mathieu functions), we obtain four transcendental equations for the resonances, each
one associated with an irreducible representation of C2v. In order to solve these equations,
we consider the uniform asymptotic expansions of Mathieu and modified Mathieu functions
constructed (in terms of Airy functions) by applying the Langer–Olver method [7,8]. We then
perturbatively solve the equations for the resonances and, by carefully taking into account
Stokes’s phenomenon, we exponentially improve the asymptotic expansion for resonances.

It should be noted that the present paper is linked with previous work done in the context
of the semiclassical and exact quantizations of the elliptic billiard, a topic which has been the
subject of a rather large number of recent investigations [9–17]. The splitting up of resonances
(or more exactly of energy levels) of the elliptic billiard has been considered in the context of
Einstein–Brillouin–Keller (EBK) quantization [18, 19] and described by using uniform EBK
quantization rules (see e.g. [9, 10, 14] or, for a slightly different approach, [15]). In these
approaches, the whole spectrum of the elliptic billiard is described, while asymptotic formulae
for the energy levels are not explicitly obtained. Our method is different. It is only valid for
resonances associated with whispering-gallery modes but it provides asymptotic formulas for
resonances. We believe that it could be generalized for the whole spectrum by using uniform
asymptotic expansions of Mathieu and modified Mathieu functions constructed in terms of
Weber functions.

All the numerical calculations and some algebraic ones have been performed with
Mathematica [20]. The numerical results displayed in the paper have been obtained using
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this program. The main advantage with Mathematica is that it can be configured to work out
with any specified accuracy. ‘Exact’ results are displayed to six decimal places but are known
to 20 decimal places. Such a precision is sometimes required to properly extract the splitting.
Asymptotic results have been obtained by truncating asymptotic expansions near their least
term.

2. The example of the circular cavity

2.1. Whispering-gallery modes of a circular cavity

Let us first consider a circular cavity, i.e. a region � bounded by a circle of radius a in the
plane Oxy. We shall use the polar coordinate system (ρ, ϕ), defined with respect to the centre
O of the circle. The resonant modes �(ρ, ϕ) of the cavity � and the associated resonances k

are the solutions of the Helmholtz equation

1

ρ

∂

∂ρ

(
ρ
∂�

∂ρ

)
+

1

ρ2

∂2�

∂ϕ2
+ k2� = 0 (1)

subject to the Dirichlet boundary condition �(ρ = a, ϕ) = 0. The method of separation of
variables provides two distinct families of solutions in the form

�(c)
ν (ρ, ϕ) = Jν(kρ) cos νϕ (2a)

�(s)
ν (ρ, ϕ) = Jν(kρ) sin νϕ (2b)

where ν is a separation constant and where Jν(x) denotes the Bessel function of the first
kind [21]. Equations (2a) and (2a) are respectively even and odd in the transformation
ϕ → −ϕ. We first assume that ϕ ∈] − ∞,+∞[. � is then a region of an infinitely sheeted
Riemann surface [3]. The Dirichlet boundary condition reads

Jν(ka) = 0 ∀ ka. (3)

We first determine its solutions, i.e. the eigenvalues ν = ν�(ka) (with � ∈ N
∗). Resonances

(ka)n,� are then sought as the particular values of the reduced wavenumber ka providing
periodic solutions of period 2π , i.e. as the solutions of the equation

ν�(ka) = n (4)

with n ∈ N. Whispering-gallery modes are associated with the resonances (ka)n,� closest to
the corresponding n. These particular resonances arise for � = 1 and sufficiently large n. Thus
the eigenfunctions of whispering-gallery type are given by

�(c)
n (ρ, ϕ) = Jn

(
(ka)n,1

ρ

a

)
cos nϕ (5a)

�(s)
n (ρ, ϕ) = Jn

(
(ka)n,1

ρ

a

)
sin nϕ (5b)

and a given resonance (ka)n,1 is twofold degenerate.

2.2. Asymptotic expansions for the eigenvalues ν�(ka)

We now determine the asymptotic expansions (for ka → +∞) for the eigenvalues ν�(ka), by
solving (3). With this aim in view, we need the uniform asymptotic expansion for the Bessel
function of the first kind [21, 22] obtained by using the Langer–Olver method [7, 8] and valid
for |ν| → ∞ and kρ 	 ν,

Jν(kρ) =
√

2

(
ν2ζ

ν2 − k2ρ2

)1/4{Ai(ν2/3ζ )

ν1/3

∞∑
s=0

As(ζ )

ν2s
+

Ai′(ν2/3ζ )

ν5/3

∞∑
s=0

Bs(ζ )

ν2s

}
. (6)
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Here, ζ is given by

2

3
ζ 3/2 = −

∫ kρ/ν

1

(
1 − z2

z2

)1/2

dz (7)

and is chosen so that it is real when ν is real and positive, and kρ/ν ∈ [0, 1]. Furthermore, Ai(x)
denotes the Airy function, which plays a big role throughout the paper. For more precisions
about this function, we refer to chapter 10 of [21]. The coefficients As(ζ ) and Bs(ζ ) are
defined by recurrence relations and are given explicitly in [21, 22]. We only consider the first
two leading terms of (6) and we use

A0(ζ ) = 1 (8a)

B0(ζ ) = − 5

48ζ 2
+

1

24ζ 1/2

[
5ν3

(ν2 − k2ρ2)3/2
− 3ν

(ν2 − k2ρ2)1/2

]
. (8b)

To this degree of approximation,

Jν(ka) =
√

2

(
ν2ζ

ν2 − k2a2

)1/4 {
Ai(ν2/3ζ )

ν1/3
+ B0(ζ )

Ai′(ν2/3ζ )

ν5/3

}[
1 + O

|ν|→∞

(
1

ν2

)]
(9)

and the condition Jν(ka) = 0 can be written

Ai(ν2/3ζ )

Ai′(ν2/3ζ )
≈ −ν−4/3B0(ζ ). (10)

The eigenvalues ν�(ka) can be sought around the solutions of

Ai(ν2/3ζ ) = 0 (11)

i.e. as the solutions of

νζ 3/2 = (x� + δx)3/2 (12)

where x� (� ∈ N
∗) is the lth zero of the Airy function Ai(x) (see table 1 for the first five

numerical values). By expanding in (10) Ai(x) and Ai′(x) in Taylor series about x�, we obtain

δx = −ν−4/3B0(ζ ). (13)

Equation (12) can be solved step by step and we finally obtain, for the eigenvalues, the following
asymptotic expansions:

ν�(ka) = ka + x�

(
ka

2

)1/3

+
x2
�

60

(
ka

2

)−1/3

− x�
3 + 10

1400

(
ka

2

)−1

+
281 x�

4 + 10 440 x�

4536 000

(
ka

2

)−5/3

− 73 769 x�
5 + 6624 900 x�

2

10 478 160 000

(
ka

2

)−7/3

+
93 617 x�

6 + 16 495 400 x�
3 − 1744 600

100 900 800 000

(
ka

2

)−3

+ O
ka→+∞

[(ka)−11/3]. (14)

Up to this order of the asymptotic expansion (14), the terms corresponding to s = 0 into (6)
are sufficient.

It should be noted that the present eigenvalue problem is analogous to the determination
of the Regge poles in the scattering problem considered in [4]. In particular, the expression
(14) can be recovered from the asymptotic expansions for Regge poles (see [4, equation (25)])
by changing x� in e2iπ/3x�.
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Table 1. Zeros x� of the Airy function Ai(x).

� x�

1 −2.338 107 410 459 774
2 −4.087 949 443 057 359
3 −5.520 559 828 095 544
4 −6.786 708 090 071 631
5 −7.944 133 587 393 717

2.3. Asymptotic expansions for resonances

By taking for ν�(ka) its asymptotic expansion (14) and then by inverting equation (4), we
obtain

(ka)n,� = n − x�

(n
2

)1/3
+

3 x2
�

20

(n
2

)−1/3
+

x3
� + 10

1400

(n
2

)−1
− 479 x�

4 − 40 x�

504 000

(n
2

)−5/3

−20 231 x�
5 + 55 100 x�

2

129 360 000

(n
2

)−7/3
+ O

n→+∞
(n−3). (15)

As previously noted, whispering-gallery modes correspond to the resonances (ka)n,�
closest to the corresponding n. These particular resonances arise for � = 1 and sufficiently
large n. This is consistent with the domain of validity of the uniform asymptotic expansion
(6) (|ν| → ∞ and ka 	 ν with ν 	 n) considered in the calculations.

3. The elliptic cavity

3.1. Geometry and symmetry considerations

Let us now consider an elliptic cavity, i.e. a region � bounded by an ellipse in the plane
Oxy. We introduce the elliptic coordinates (ξ, η), related to the rectangular ones (x, y) by the
transformation

x = c cosh ξ cos η y = c sinh ξ sin η (16)

where 0 � ξ < ∞ and −π � η � π . The equation ξ = ξ0 defines the surface of an ellipse
whose eccentricity is e = 1/ cosh ξ0 and whose foci are located at (x = ±c, y = 0). The
limiting case ξ0 → +∞ corresponds to the circle.

The transition from the circular cavity to the elliptic one corresponds to the breaking of
O(2) symmetry (invariance under any rotation about the Oz axis, perpendicular to the plane
Oxy). However, the elliptic cavity remains invariant under four symmetry transformations: E,
the identity transformation (η → η); C2, the rotation through π about the Oz axis (η → π +η);
πx , the mirror reflection in the plane Oxz (η → −η) and πy , the mirror reflection in the plane
Oyz (η → π−η). These four transformations form the finite group C2v. Four one-dimensional
irreducible representations labelled A1, A2, B1 and B2 are associated with the symmetry group
C2v [5].

Consequently, any function V of the ‘angular’ coordinate η can be expanded in terms of
these four irreducible representations as

V (η) = V (A1)(η) + V (A2)(η) + V (B1)(η) + V (B2)(η) (17)

with the components V (A1), V (A2), V (B1) and V (B2) satisfying (see equation (31) of [4])

dV (A1)

dη
(η = 0) = 0

dV (A1)

dη
(η = π/2) = 0 (18a)
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V (A2)(η = 0) = 0 V (A2)(η = π/2) = 0 (18b)

dV (B1)

dη
(η = 0) = 0 V (B1)(η = π/2) = 0 (18c)

V (B2)(η = 0) = 0
dV (B2)

dη
(η = π/2) = 0. (18d)

3.2. Eigenfunctions of the whispering-gallery type

The resonant modes �(ξ, η) of the cavity � and the associated resonances k are the solutions
of the Helmholtz equation (in elliptic coordinates)

∂2�

∂ξ 2
+

∂2�

∂η2
+ (kc)2(cosh2ξ − cos2 η)� = 0 (19)

subject to the Dirichlet boundary condition at ξ = ξ0. Since the coordinate system (16), as well
as the Helmholtz equation (19), are invariant under the transformation (ξ, η) → (−ξ,−η),
the resonant modes �(ξ, η) are also subject to the condition

�(−ξ,−η) = �(ξ, η). (20)

These mode solutions are sought by separation of variables, in the form �(ξ, η) = U(ξ)V (η),
where U(ξ) and V (η) must satisfy the modified Mathieu equation

U ′′(ξ) − (kc)2(b2 − cosh2ξ)U(ξ) = 0 (21)

and the (ordinary) Mathieu equation

V ′′(η) + (kc)2(b2 − cos2 η)V (η) = 0 (22)

respectively. The symmetry of the modified Mathieu equation (21) under the exchange
ξ → −ξ leads us to consider two linearly independent solutions: an even solution, denoted
by Uc(ξ, kc, b) and an odd one, denoted by Us(ξ, kc, b). Moreover, these two solutions are
assumed to be regular at ξ = 0. Without loss of generality, we require that they satisfy the
boundary conditions

Uc(0, kc, b) = 1 Uc′(0, kc, b) = 0

Us(0, kc, b) = 0 Us ′(0, kc, b) = 1
(23)

with Uc′ = dUc/dξ and Us ′ = dUs/dξ . Similarly, because of symmetry under the exchange
η → −η, we consider two linearly independent solutions of the Mathieu equation (22), denoted
by c(η, kc, b) (even solution) and s(η, kc, b) (odd solution), normalized in such a way that

c(0, kc, b) = 1 c′(0, kc, b) = 0

s(0, kc, b) = 0 s ′(0, kc, b) = 1
(24)

with c′ = dc/dη and s ′ = ds/dη. The combination of these different solutions leads us to
seek the resonant modes in the form

�(c)(ξ, η, kc, b) = Uc(ξ, kc, b)c(η, kc, b) (25a)

�(s)(ξ, η, kc, b) = Us(ξ, kc, b)s(η, kc, b). (25b)

Indeed, the combinations Uc(ξ, kc, b)s(η, kc, b) and Us(ξ, kc, b)c(η, kc, b) are excluded
from the condition (20).

We first assume that η ∈] − ∞,+∞[. The Dirichlet boundary condition reads

Uc(ξ0, kc, b) = 0 ∀ kc (26a)

Us(ξ0, kc, b) = 0 ∀ kc. (26b)
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We thus determine two sets of eigenvalues, labelled {b(c)
� (kc)}�∈N∗ and {b(s)

� (kc)}�∈N∗ , which
satisfy respectively equations (26a) and (26b).

Resonances are the particular values of the reduced wavenumber kc for which the functions

c�(η, kc)
def= c(η, kc, b

(c)
� ) and s�(η, kc)

def= s(η, kc, b
(s)
� ) satisfy the symmetry properties

(18a)–(18d). The conditions for resonance appear then as

c′
�(π/2, kc) = 0 (A1) (27a)

s�(π/2, kc) = 0 (A2) (27b)

c�(π/2, kc) = 0 (B1) (27c)

s ′
�(π/2, kc) = 0 (B2). (27d)

By solving these equations, we obtain four sets of resonances labelled (kc)
(A1)
n,� , (kc)(A2)

n,� , (kc)(B1)
n,�

and (kc)
(B2)
n,� with n even (respectively n odd) in the representations A1 and A2 (respectively the

representations B1 and B2). Finally, the whispering-gallery modes (corresponding to � = 1)
can be constructed in the form

�
(A1)
2r (ξ, η) = Uc(ξ, (kc)

(A1)
2r,1 , b

(c)
1 )c(η, (kc)

(A1)
2r,1 , b

(c)
1 ) r ∈ N (28a)

�
(A2)
2r (ξ, η) = Us(ξ, (kc)

(A2)
2r,1 , b

(s)
1 )s(η, (kc)

(A2)
2r,1 , b

(s)
1 ) r ∈ N

∗ (28b)

�
(B1)
2r+1(ξ, η) = Uc(ξ, (kc)

(B1)
2r+1,1, b

(c)
1 )c(η, (kc)

(B1)
2r+1,1, b

(c)
1 ) r ∈ N (28c)

�
(B2)
2r+1(ξ, η) = Us(ξ, (kc)

(B2)
2r+1,1, b

(s)
1 )s(η, (kc)

(B2)
2r+1,1, b

(s)
1 ) r ∈ N. (28d)

It should be noted that each resonance is non-degenerate. The symmetry breaking O(2) −→
C2v leads to the splitting up of resonances.

3.3. Asymptotic expansions for the eigenvalues b�

In order to determine the asymptotic expansions (for kc → +∞) for the eigenvalues b
(c)
� (kc)

and b
(s)
� (kc), we need the uniform asymptotic expansions for the radial solutions Uc(ξ, kc, b)

and Us(ξ, kc, b). They can be constructed by using the Langer–Olver method [7, 8], which
has been previously applied to the Mathieu equations [4].

For large kc, the Langer–Olver method permits us to obtain a pair of linearly independent
solutions of the modified Mathieu equation (21) in the form

U+(ξ, b) = e−iπ/2ζ 1/4(b2 − cosh2ξ)−1/4

×
{

Ai[(kc)2/3ζ ]
∞∑
s=0

As(ζ )

(kc)2s
+

Ai′[(kc)2/3ζ ]

(kc)4/3

∞∑
s=0

Bs(ζ )

(kc)2s

}
(29)

and

U−(ξ, b) = e−iπ/2ζ 1/4(b2 − cosh2ξ)−1/4

×
{

Ai[e2iπ/3(kc)2/3ζ ]
∞∑
s=0

As(ζ )

(kc)2s
+

e2iπ/3Ai′[e2iπ/3(kc)2/3ζ ]

(kc)4/3

∞∑
s=0

Bs(ζ )

(kc)2s

}
(30)

where ζ = ζ(ξ, b) is defined by

2
3 (±ζ )3/2 = ∓

∫ ξ

arccoshb
[±(b2 − cosh2u)]1/2 du (31)

and where the coefficientsAs(ζ ) andBs(ζ ) are given by recurrence relations. The two functions
Uc(ξ, b) andUs(ξ, b), subject to the conditions (23), can be constructed as linear combinations
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of U+(ξ, b) and U−(ξ, b). We obtain the uniform asymptotic expansions, valid for large kc

and ξ 	 arccoshb,

Uc(ξ, b) = 2πeiπ/6

(kc)2/3
{U ′

−(0, b)U+(ξ, b) − U ′
+(0, b)U−(ξ, b)} (32)

and

Us(ξ, b) = −2πeiπ/6

(kc)2/3
{U−(0, b)U+(ξ, b) − U+(0, b)U−(ξ, b)}. (33)

From (32) and (33), equations (26a) and (26b) become respectively

U ′
−(0, b)U+(ξ0, b) = U ′

+(0, b)U−(ξ0, b) (34a)

which provides the eigenvalues b
(c)
� , and

U−(0, b)U+(ξ0, b) = U+(0, b)U−(ξ0, b) (34b)

which provides the eigenvalues b(s)
� . It can be shown (see appendix B) that the right-hand sides

in equations (34a) and (34b) are exponentially small with respect to the left-hand ones. Thus,
in a first approximation, we consider that (34a) and (34b) both reduce to the single equation

U+(ξ0, b) = 0. (35)

Equation (35) does not permit us to determine the two sets of eigenvalues, but only one, which
is denoted by {b�}�∈N∗ . We only consider the first two leading terms (corresponding to s = 0)
of the asymptotic expansion (29) at ξ = ξ0:

U+(ξ0, b) = e−iπ/2[ζ(ξ0, b)]
1/4(b2 − cosh2ξ0)

−1/4

{
Ai[(kc)2/3ζ(ξ0, b)]

+B0[ζ(ξ0, b)]
Ai′[(kc)2/3ζ(ξ0, b)]

(kc)4/3

}[
1 + O

kc→+∞

(
1

(kc)2

)]
(36)

with

B0(ζ ) = − 5

48ζ 2
+

√
b2 − 1

12
√
ζ

{
iF(iξ | 1

1−b2 )

(b2 − 1)
− i(2b4 − 3b2 + 1)E(iξ | 1

1−b2 )

2 b2(b2 − 1)2

+
(14b4 − 14b2 + 1) sinh 2ξ + (b2 − 1/2) sinh 4ξ

8 b2(b2 − 1)2(b2 − cosh2ξ)3/2

}
. (37)

Here, F and E denote the elliptic integrals of the first and second kind respectively [21],
defined by

F(φ|m) =
∫ φ

0
(1 − m sin2 θ)−1/2 dθ and E(φ|m) =

∫ φ

0
(1 − m sin2 θ)1/2 dθ.

(38)

To this degree of approximation, the equation U+(ξ0, b) = 0 can be written as

Ai[(kc)2/3ζ(ξ0, b)]

Ai′[(kc)2/3ζ(ξ0, b)]
≈ −(kc)−4/3B0[ζ(ξ0, b)]. (39)

Equation (39) is solved perturbatively by following the method previously developed in the
context of the circular cavity (see equations (10)–(13)) and we obtain, for the eigenvalues, the
asymptotic expansions:

b�(kc) = cosh ξ0 +
2−1/3(sinh ξ0)

2/3

(cosh ξ0)1/3
q1,0(x�)(kc)

−2/3
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+
2−2/3

60(cosh ξ0)5/3(sinh ξ0)2/3

[ 1∑
j=0

q2,j (x�) cosh (2jξ0)

]
(kc)−4/3

+
1

16 800(cosh ξ0)3(sinh ξ0)2

[ 2∑
j=0

q3,j (x�) cosh (2jξ0)

]
(kc)−2

+
2−1/3

36 288 000(cosh ξ0)13/3(sinh ξ0)10/3

[ 3∑
j=0

q4,j (x�) cosh (2jξ0)

]
(kc)−8/3

+
2−2/3

167 650 560 000(cosh ξ0)17/3(sinh ξ0)14/3

×
[ 4∑

j=0

q5,j (x�) cosh (2jξ0)

]
(kc)−10/3

+
1

6457 651 200 000(cosh ξ0)7(sinh ξ0)6

[ 5∑
j=0

q6,j (x�) cosh (2jξ0)

]
(kc)−4

+ O
kc→+∞

[(kc)−14/3]. (40)

Here, the qi,j (x�) are polynomials of degree i in x� which have been already obtained in the
scattering problem [4], and are given by

q1,0(x�) = x� (41a)

q2,0(x�) = 15 x�
2

q2,1(x�) = x�
2 (41b)

q3,0(x�) = 570 + 407 x�
3

q3,1(x�) = −980 x�
3

q3,2(x�) = −3(10 + x�
3)

(41c)

q4,0(x�) = 90 (6840 x� + 13 711 x�
4)

q4,1(x�) = −21 (119 880 x� + 48 037 x�
4)

q4,2(x�) = −90 (360 x� − 5641 x�
4)

q4,3(x�) = 10 440 x� + 281 x�
4

(41d)

q5,0(x�) = 3 (4557 365 100 x�
2 + 1125 295 351 x�

5)

q5,1(x�) = −27 720 (283 050 x�
2 + 266 977 x�

5)

q5,2(x�) = 4 (1919 325 600 x�
2 + 481 897 921 x�

5)

q5,3(x�) = 9240 (8550 x�
2 − 60 997 x�

5)

q5,4(x�) = −(6624 900 x�
2 + 73 769 x�

5)

(41e)

q6,0(x�) = 5850 (318 120 + 33 314 840 x�
3 + 15 814 949 x�

6)

q6,1(x�) = −10 (1491 919 000 + 63 787 753 000 x�
3 + 10 704 688 123 x�

6)

q6,2(x�) = −2600 (75 240 − 48 704 080 x�
3 − 27 746 557 x�

6)

q6,3(x�) = 35 (13 413 400 − 2239 211 400 x�
3 − 382 250 049 x�

6)

q6,4(x�) = 650 (3960 − 886 040 x�
3 + 4013 887 x�

6)

q6,5(x�) = −(1744 600 − 16 495 400 x�
3 − 93 617 x�

6).

(41f)

It should be noted that the expression (40) can be recovered from the asymptotic expansions for
the Regge poles in the scattering problem (see [4], equation (56)) by changing x� in e2iπ/3x�.
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3.4. Exponentially improved asymptotic expansions for eigenvalues b�

We have obtained the perturbative part of the asymptotic expansions for the eigenvalues b
(c)
�

and b
(c)
� . We now need to capture the exponentially small terms describing the splitting up of

these eigenvalues. Thus, we again consider equations (34a) and (34b) but now we take into
account the exponentially small contributions. From the uniform asymptotic expansions

Uc(ξ, b) = 2πeiπ/6ζ(0, b)−1/4ζ(ξ, b)1/4(b2 − 1)1/4(b2 − cosh2ξ)−1/4

×
{

e2iπ/3Ai′[e2iπ/3(kc)2/3ζ(0, b)]Ai[(kc)2/3ζ(ξ, b)]

−Ai′[(kc)2/3ζ(0, b)]Ai[e2iπ/3(kc)2/3ζ(ξ, b)]

}
[1 + O

kc→+∞
(1/kc)] (42)

Us(ξ, b) = 2πeiπ/6(kc)−2/3ζ(0, b)1/4ζ(ξ, b)1/4(b2 − 1)−1/4(b2 − cosh2ξ)−1/4

×{Ai[e2iπ/3(kc)2/3ζ(0, b)]Ai[(kc)2/3ζ(ξ, b)]

−Ai[(kc)2/3ζ(0, b)]Ai[e2iπ/3(kc)2/3ζ(ξ, b)]}[1 + O
kc→+∞

(1/kc)] (43)

and by using the asymptotic behaviour of the Airy function (see appendix A), equations (34a)
(providing the b

(c)
� associated with the ‘even’ modes) and (34b) (providing the b

(s)
� associated

with the ‘odd’ modes) become respectively

Ai[(kc)2/3ζ(ξ0, b)] ≈ −eiπ/6 exp [− 4
3kc[ζ(0, b)]3/2]Ai[e2iπ/3(kc)2/3ζ(ξ0, b)] (44a)

and

Ai[(kc)2/3ζ(ξ0, b)] ≈ eiπ/6 exp [− 4
3kc[ζ(0, b)]3/2]Ai[e2iπ/3(kc)2/3ζ(ξ0, b)]. (44b)

Neglecting the exponentially small contributions in the previous two equations, reduce (44a)
and (44b) to the single equation (11). Therefore, equation (39) can be exponentially improved
and leads to
Ai[(kc)2/3ζ(ξ0, b)]

Ai′[(kc)2/3ζ(ξ0, b)]
= −

{
(kc)−4/3B0[ζ(ξ0, b)] + · · · · · · · · · · · · · · · · · · · · · · · · · · ·︸ ︷︷ ︸

higher orders in 1/(kc)

± eiπ/6 Ai[e2iπ/3(kc)2/3ζ(ξ0, b)]

Ai′[(kc)2/3ζ(ξ0, b)]
exp

[
− 4

3
kc[ζ(0, b)]3/2

]
︸ ︷︷ ︸

term lying beyond all orders

}
(45)

where the upper and lower signs correspond respectively to the even (c) and odd (s) cases. By
expanding equation (45) in a Taylor series about the solutions b = b� of equation (39), and
then by using the approximation (kc)2/3ζ(ξ0, b�) ≈ x�, we obtain the eigenvalues b(c)

� and b
(s)
�

in the form

b
(c)
� (kc) = b�(kc) + 1

2δb�(kc) (46a)

b
(s)
� (kc) = b�(kc) − 1

2δb�(kc) (46b)

where b�(kc) is given by (40), and where

δb�(kc) = b
(c)
� (kc) − b

(s)
� (kc) = − 2eiπ/6Ai(e2iπ/3x�)

(kc)2/3(∂ζ/∂b)ξ0,b�
Ai′(x�)

exp

[
−4

3
kc[ζ(0, b�)]

3/2

]
.

(47)

The splitting described by (47) is purely of exponential nature since higher orders in 1/(kc)
have been neglected in equations (42) and (43). It would be possible to take into account these
corrections, but it is clear that their contributions are insignificant.
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Table 2. Average values and splitting of eigenvalues b1 for ξ0 = 1 and various kc.

b1 δb1 ln(δb1)

kc Exact Asympt. Exact Asympt. Exact Asympt.

6 1.069 453 1.068 447 2.466 × 10−2 2.711 × 10−2 −3.702 −3.608
7 1.106 977 1.105 920 8.493 × 10−3 9.112 × 10−3 −4.769 −4.698
8 1.137 940 1.137 362 2.586 × 10−3 2.708 × 10−3 −5.958 −5.912
9 1.164 278 1.163 976 7.184 × 10−4 7.419 × 10−4 −7.238 −7.206

10 1.186 927 1.186 759 1.868 × 10−4 1.915 × 10−4 −8.585 −8.561
11 1.206 579 1.206 479 4.625 × 10−5 4.719 × 10−5 −9.981 −9.961
12 1.223 787 1.223 724 1.102 × 10−5 1.121 × 10−5 −11.416 −11.399
13 1.238 986 1.238 944 2.543 × 10−6 2.580 × 10−6 −12.882 −12.868
14 1.252 517 1.252 489 5.713 × 10−7 5.786 × 10−7 −14.375 −14.363
15 1.264 649 1.264 629 1.255 × 10−7 1.269 × 10−7 −15.891 −15.880
16 1.275 597 1.275 583 2.702 × 10−8 2.730 × 10−8 −17.427 −17.417
17 1.285 533 1.285 523 5.717 × 10−9 5.771 × 10−9 −18.980 −18.970

Table 3. Average values and splitting of eigenvalues b1 for kc = 10 and various ξ0.

b1 δb1 ln(δb1)

ξ0 Exact Asympt. Exact Asympt. Exact Asympt.

0.8 1.048 023 1.047 363 1.261 × 10−2 1.369 × 10−2 −4.373 −4.291
0.9 1.108 630 1.108 171 2.229 × 10−3 2.327 × 10−3 −6.106 −6.063
1.0 1.186 927 1.186 759 1.868 × 10−4 1.915 × 10−4 −8.585 −8.561
1.1 1.283 353 1.283 283 7.292 × 10−6 7.425 × 10−6 −11.829 −11.811
1.2 1.398 411 1.398 379 1.243 × 10−7 1.262 × 10−7 −15.901 −15.885
1.3 1.533 028 1.533 012 8.412 × 10−10 8.518 × 10−10 −20.896 −20.884
1.4 1.688 434 1.688 426 2.000 × 10−12 2.022 × 10−12 −26.938 −26.927

‘Exact’ values for b
(c)
� and b

(s)
� can be obtained by numerically solving equations (26a)

and (26b). Exact average eigenvalues and splitting are then defined as b� = 1
2 (b

(c)
� + b

(s)
� ) and

δb� = b
(c)
� − b

(s)
� respectively. In table 2 and 3, the asymptotic approximations (40) and (47)

are compared with the exact values for b1 and δb1 defined above. A good agreement is found,
and the asymptotic expansions give even better approximations when kc and ξ0 are large.
Furthermore, it should be noted that the splitting is always well captured and is numerically
significant for low frequencies.

3.5. Asymptotic expansions for resonances

Resonances are the particular values of the reduced wavenumber kc which satisfy equations
(27a)–(27d). First, we determine the asymptotic expansions for resonances without paying
attention to the terms lying beyond all orders. In order to do so, we solve (27a)–(27d) by using
the WKB expansions [4]

c(η, b) = 1
2R(0, b)1/2R(η, b)−1/2

×
{

exp

[
kc

∫ η

0
R(η′, b) dη′

](
1 +

Y1(η, b)

kc
+ O

kc→+∞

(
1

(kc)2

))

+ exp

[
− kc

∫ η

0
R(η′, b) dη′

](
1 − Y1(η, b)

kc
+ O

kc→+∞

(
1

(kc)2

))}
(48)
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s(η, b) = 1

2kc
R(0, b)−1/2R(η, b)−1/2

×
{

exp

[
kc

∫ η

0
R(η′, b) dη′

](
1 +

Y1(η, b)

kc
+ O

kc→+∞

(
1

(kc)2

))

− exp

[
− kc

∫ η

0
R(η′, b) dη′

](
1 − Y1(η, b)

kc
+ O

kc→+∞

(
1

(kc)2

))}
(49)

c′(η, b) = kc

2
R(0, b)1/2R(η, b)1/2

×
{

exp

[
kc

∫ η

0
R(η′, b) dη′

](
1 +

1

kc

(
Y1(η, b) − R′(η, b)

2R2(η, b)

)

+ O
kc→+∞

(
1

(kc)2

))
− exp

[
− kc

∫ η

0
R(η′, b) dη′

]

×
(

1 − 1

kc

(
Y1(η, b) − R′(η, b)

2R2(η, b)

)
+ O

kc→+∞

(
1

(kc)2

))}
(50)

and

s ′(η, b) = 1
2R(0, b)−1/2R(η, b)1/2

×
{

exp

[
kc

∫ η

0
R(η′, b) dη′

](
1 +

1

kc

(
Y1(η, b) − R′(η, b)

2R2(η, b)

)

+ O
kc→+∞

(
1

(kc)2

))
+ exp

[
− kc

∫ η

0
R(η′, b) dη′

]

×
(

1 − 1

kc

(
Y1(η, b) − R′(η, b)

2R2(η, b)

)
+ O

kc→+∞

(
1

(kc)2

))}
(51)

with

R(η, b) = i(b2 − cos2 η)1/2 (52)

and

Y1(η, b) =
∫ η

0

(
R′′(η′, b)
4R2(η′, b)

− 3R′2(η′, b)
8R3(η′, b)

)
dη′. (53)

The four conditions for resonance then reduce to

1(kc, b�) = nπ

2
− Y1(π/2, b�)

i kc
+ O

kc→+∞

(
1

(kc)2

)
(54)

with n ∈ N. Resonances A1 and A2 (respectively resonances B1 and B2) correspond to n even
(respectively to n odd). Here, the functions 1(kc, b) and Y1(π/2, b) are given by

1(kc, b) = kc

∫ π/2

0
(b2 − cos2 η)1/2 dη = kc

√
b2 − 1E[1/(1 − b2)] (55)

and

Y1(π/2, b) = (1 − 2b2)E[1/(1 − b2)] + 2b2K[1/(1 − b2)]

24b2
√

1 − b2
(56)

whereK andE denote complete elliptic integrals of the first and second kinds respectively [21],
defined by (see also (38))

K(m) = F(π/2|m) =
∫ π/2

0
(1 − m sin2 θ)−1/2 dθ (57a)
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and

E(m) = E(π/2|m) =
∫ π/2

0
(1 − m sin2 θ)1/2 dθ. (57b)

By taking for b�(kc) its asymptotic expansion (40), we can solve (54) perturbatively, and
we obtain

(kc)n,� = π

2Ẽ(ξ0)
n − π1/3x� K̃(ξ0)

22/3 Ẽ4/3(ξ0)(cosh ξ0 sinh ξ0)1/3
n1/3

+
x2
� Q2(ξ0, x�)

21/3 π1/3 60 Ẽ5/3(ξ0)(cosh ξ0 sinh ξ0)5/3
n−1/3

+
Q3(ξ0, x�)

8400π Ẽ2(ξ0)(cosh ξ0 sinh ξ0)3
n−1

− x� Q4(ξ0, x�)

22/3 π5/3 4536 000 Ẽ7/3(ξ0)(cosh ξ0 sinh ξ0)13/3
n−5/3

+
x2
� Q5(ξ0, x�)

21/3 π7/3 41 912 640 000 Ẽ8/3(ξ0)(cosh ξ0 sinh ξ0)17/3
n−7/3

+ O
n→+∞

(n−3) (58)

where the polynomials Qi(x�) are given in [4] (equation (63)). In the previous formula, we
have defined K̃(ξ0) = cosh ξ0 K(−1/sinh2ξ0) and Ẽ(ξ0) = sinh ξ0 E(−1/sinh2ξ0). It should
be noted that the previous expression can be recovered from equation (62) of [4] by changing
again x� in e2iπ/3x�.

3.6. Exponentially improved asymptotic expansions for resonances

In order to display the splitting up of resonances, we use the uniform asymptotic expansions for
the functions c(η, b), s(η, b), c′(η, b) and s ′(η, b). They have been constructed, by applying
the Langer–Olver method, in [4]. The leading terms of these uniform asymptotic expansions,
valid for large kc and η 	 arccos b, are given by

c(η, b) = −2πeiπ/6ϑ(0, b)−1/4ϑ(η, b)1/4(b2 − 1)1/4(b2 − cos2 η)−1/4

×[Ai′((kc)2/3ϑ(0, b))Ai(e2iπ/3(kc)2/3ϑ(η, b))

−e2iπ/3Ai′(e2iπ/3(kc)2/3ϑ(0, b))Ai((kc)2/3ϑ(η, b))]

(
1 + O

kc→+∞

(
1

kc

))
(59)

s(η, b) = −2πe−iπ/3(kc)−2/3ϑ(0, b)1/4ϑ(η, b)1/4(b2 − 1)−1/4(b2 − cos2 η)−1/4

×[Ai((kc)2/3ϑ(0, b))Ai(e2iπ/3(kc)2/3ϑ(η, b))

−Ai(e2iπ/3(kc)2/3ϑ(0, b))Ai((kc)2/3ϑ(η, b))]

(
1 + O

kc→+∞

(
1

kc

))
(60)

c′(η, b) = 2πe4iπ/3(kc)2/3ϑ(0, b)−1/4ϑ(η, b)−1/4(b2 − 1)1/4(b2 − cos2 η)1/4

×[Ai′((kc)2/3ϑ(0, b))Ai′(e2iπ/3(kc)2/3ϑ(η, b))

−Ai′(e2iπ/3(kc)2/3ϑ(0, b))Ai′((kc)2/3ϑ(η, b))]

(
1 + O

kc→+∞

(
1

kc

))
(61)

and

s ′(η, b) = 2πeiπ/6ϑ(0, b)1/4ϑ(η, b)−1/4(b2 − 1)−1/4(b2 − cos2 η)1/4

×[Ai((kc)2/3ϑ(0, b))e2iπ/3Ai′(e2iπ/3(kc)2/3ϑ(η, b))
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−Ai(e2iπ/3(kc)2/3ϑ(0, b))Ai′((kc)2/3ϑ(η, b))]

(
1 + O

kc→+∞

(
1

kc

))
(62)

with ϑ defined by the relation

2
3 [ϑ(η, b)]3/2 = −i

∫ η

arccosb
(b2 − cos2 v)1/2 dv. (63)

By neglecting the higher orders in 1/(kc), we shall capture only the leading contribution
to the splitting. The conditions for resonance c′

�(π/2) = 0, s�(π/2) = 0, c�(π/2) = 0
and s ′

�(π/2) = 0, written in terms of the previous uniform asymptotic expansions, reduce
respectively to

Ai′[(kc)2/3 ϑ(0, b(c)
� )]Ai′[e2iπ/3(kc)2/3 ϑ(π/2, b(c)

� )]

≈ Ai′[e2iπ/3(kc)2/3 ϑ(0, b(c)
� )]Ai′[(kc)2/3 ϑ(π/2, b(c)

� )] (64a)

Ai[(kc)2/3 ϑ(0, b(s)
� )]Ai[e2iπ/3(kc)2/3 ϑ(π/2, b(s)

� )]

≈ Ai[e2iπ/3(kc)2/3 ϑ(0, b(s)
� )]Ai[(kc)2/3 ϑ(π/2, b(s)

� )] (64b)

Ai′[(kc)2/3 ϑ(0, b(c)
� )]Ai[e2iπ/3(kc)2/3 ϑ(π/2, b(c)

� )]

≈ e2iπ/3Ai′[e2iπ/3(kc)2/3 ϑ(0, b(c)
� )]Ai[(kc)2/3 ϑ(π/2, b(c)

� )] (64c)

and

Ai[(kc)2/3ϑ(0, b(s)
� )]e2iπ/3Ai′[e2iπ/3(kc)2/3ϑ(π/2, b(s)

� )]

≈ Ai[e2iπ/3(kc)2/3ϑ(0, b(s)
� )]Ai′[(kc)2/3ϑ(π/2, b(s)

� )]. (64d)

In order to express these equations in a simpler way and to take into account Stokes’s
phenomenon, we shall use the asymptotic behaviour of the Airy functions (see appendix A). For
z = (kc)2/3 ϑ(π/2, b�), z = e2iπ/3(kc)2/3 ϑ(0, b�) and z = e2iπ/3(kc)2/3 ϑ(π/2, b�), we take
σ = 0 because −2π/3 < arg z < 2π/3, while for z = (kc)2/3 ϑ(0, b�), we take σ = −1/2
because z lies exactly on the Stokes line arg z = −2π/3. By substituting the suitable asymptotic
expansions in equations (64a)–(64d), and by noting that the function 1(kc, b), already defined
by (55), can also be expressed from (63) as 1(kc, b) = −i 2

3kc[ϑ(0, b)3/2 −ϑ(π/2, b)3/2], we
obtain

1

(
kc, b� ± 1

2
δb�

)
≈ nπ

2
± 1

4
exp

[
4

3
kc

[
ϑ

(
0, b� ± 1

2
δb�

)]3/2
]
. (65)

By expanding (65) in a Taylor series to the first order, it yields

1(kc, b�) ≈ nπ

2
±
{

1

4
exp

[
4

3
kc[ϑ(0, b�)]

3/2
]

− 1

2

∂1

∂b
(kc, b�)δb�

}
. (66)

In equations (65) and (66), if n is even, the upper (respectively the lower) sign corresponds to
the A1 (respectively the A2) representation, while for n odd, the upper (respectively the lower)
sign corresponds to the B1 (respectively the B2) representation. Finally, from equation (66),
the condition for resonance (54) is exponentially improved and reads

1[kc, b�(kc)] = nπ

2
− Y1[π/2, b�(kc)]

i kc
+ · · · · · · · · · · · · · · · · · · · · · · · · · · ·︸ ︷︷ ︸

higher orders in 1/(kc)

±
{

1

4
exp

[
4

3
kc
[
ϑ(0, b�(kc))

]3/2
]

− 1

2

∂1

∂b
[kc, b�(kc)]δb�(kc)

}
︸ ︷︷ ︸

term lying beyond all orders

(67)
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with n ∈ N
∗.

The resonances (kc)n,� can be sought near the solutions (kc)n,� of equation (54). We can
write
(kc)

(A1)
2r,� = (kc)2r,� + 1

2 (δkc)2r,� (kc)
(B1)
2r+1,� = (kc)2r+1,� + 1

2 (δkc)2r+1,�

(kc)
(A2)
2r,� = (kc)2r,� − 1

2 (δkc)2r,� (kc)
(B2)
2r+1,� = (kc)2r+1,� − 1

2 (δkc)2r+1,�
(68)

with r ∈ N
∗ for the A1 and A2 resonances, r ∈ N for the B1 and B2 resonances. The separation

(δkc)n,� appears as the sum of two contributions in the form

(δkc)n,� = (δkc)rad
n,� + (δkc)

ang
n,� . (69)

Here,

(δkc)rad
n,� = −

∂1
∂b

((kc)n,�,
¯̄bn,�)

1′((kc)n,�)
δb�((kc)n,�)

= 2eiπ/6 ∂1
∂b

((kc)n,�,
¯̄bn,�)Ai(e2iπ/3x�)

(kc)
2/3
n,� 1′((kc)n,�) ∂ζ∂b (ξ0,

¯̄bn,�)Ai′(x�)
exp

[
−4

3
(kc)n,�[ζ(0,

¯̄bn,�)]
3/2

]
(70)

is linked to the splitting up of the eigenvalues b� of the ‘radial’ problem, while

(δkc)
ang
n,� = 1

21′((kc)n,�)
exp

[
4

3
(kc)n,�[ϑ(0, ¯̄bn,�)]

3/2
]

(71)

arises by taking into account the Stokes phenomenon in the ‘angular’ problem. In the two
previous equations, we have defined

1′(kc) = d

dkc
1(kc, b�(kc)) = ∂1

∂kc
(kc, b�(kc)) +

∂1

∂b
(kc, b�(kc))

db�

dkc
(kc) (72)

and
¯̄bn,� = b�((kc)n,�). (73)

‘Exact’ values for the resonances (kc)n,� can be obtained by numerically solving equations
(27a)–(27d). Exact average resonances (kc)n,� and splitting (δkc)n,� are then defined as

(kc)n,� =
{

1
2 ((kc)

(A1)
n,� + (kc)

(A2)
n,� ) (n even)

1
2 ((kc)

(B1)
n,� + (kc)

(B2)
n,� ) (n odd)

(74)

and

(δkc)n,� =
{
(kc)

(A1)
n,� − (kc)

(A2)
n,� (n even)

(kc)
(B1)
n,� − (kc)

(B2)
n,� (n odd).

(75)

In table 4 and in table 5, the asymptotic approximations (58) and (69) are compared with
the exact values for (kc)n,� and (δkc)n,� defined above. A good agreement is found, and the
asymptotic expansions give even better approximations when n and ξ0 are large. Furthermore
it could be possible to improve the asymptotic expansion (58) by looking for higher-order
terms in n−3, n−11/3, n−13/3 etc. As far as it concerns the splitting, its magnitude is correctly
described, and it should be noted that it is numerically significant for low frequencies.

3.7. Whispering-gallery modes and physical interpretation

In figures 1 and 2, we display the symmetry breaking between the A1 and A2 (n = 20) or the
B1 and B2 (n = 21) whispering-gallery modes (the darkest regions correspond to the higher
amplitudes).

Finally, in figure 3, we show the behaviour of a given whispering-gallery mode
(concentration in a very thick layer close to the boundary of the cavity, and exponential damping
outside this layer).
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Table 4. Average values and splitting of resonances for ξ0 = 1 and various n.

(kc)n,1 (δkc)n,1 ln |(δkc)n,1|

n Exact Asympt. Exact Asympt. Exact Asympt.

10 10.546 297 10.546 611 −4.66 × 10−4 −7.20 × 10−4 −7.67 −7.24
11 11.363 227 11.363 450 −1.60 × 10−4 −2.43 × 10−4 −8.74 −8.32
20 18.562 153 18.562 183 −5.01 × 10−9 −6.90 × 10−9 −19.11 −18.79
21 19.350 497 19.350 523 −1.50 × 10−9 −2.05 × 10−9 −20.32 −20.00
30 26.383 580 26.383 589 −2.28 × 10−14 −2.98 × 10−14 −31.41 −31.14
31 27.159 572 27.159 579 −6.49 × 10−15 −8.46 × 10−15 −32.67 −32.40

Table 5. Average values and splitting of resonances for n = 20 and various ξ0.

(kc)n,1 (δkc)n,1 ln |(δkc)n,1|
ξ0 Exact Asympt. Exact Asympt. Exact Asympt.

0.8 22.463 703 22.463 899 −9.01 × 10−6 −1.25 × 10−5 −11.62 −11.29
0.9 20.438 840 20.438 913 −2.28 × 10−7 −3.14 × 10−7 −15.29 −14.97
1.0 18.562 153 18.562 183 −5.01 × 10−9 −6.90 × 10−9 −19.11 −18.79
1.1 16.837 137 16.837 150 −1.00 × 10−10 −1.38 × 10−10 −23.02 −22.70
1.2 15.259 974 15.259 981 −1.89 × 10−12 −2.60 × 10−12 −27.00 −26.68
1.3 13.823 017 13.823 020 −3.40 × 10−14 −4.68 × 10−14 −31.01 −30.69
1.4 12.516 814 12.516 816 −5.97 × 10−16 −8.22 × 10−16 −35.05 −34.74

x

y  (a) 

x

y  (b)

Figure 1. (a) |�(A1)
20 |2 and (b) |�(A2)

20 |2 for ξ0 = 3/4 and 0 � η � π/2.

x

y  (a) 

x

y  (b) 

Figure 2. (a) |�(B1)
21 |2 and (b) |�(B2)

21 |2 for ξ0 = 3/4 and 0 � η � π/2.

3.8. The circular cavity as a limiting case of the elliptic one

All the results corresponding to the circular cavity (see section 2) can be recovered from
those of the elliptic cavity by taking both the limits ξ0 → +∞ and kc → 0, while keeping
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c cosh ξ0

x

|Ψ|2

c sinh ξ0

y

|Ψ|2

Figure 3. Behaviour of |�(A1)
20 |2 along the Ox and Oy axes, for ξ0 = 3/4.

(kc/2) exp ξ0 constant and equal to the reduced wavenumber ka. Indeed:

• For large ξ , cosh ξ ∼ sinh ξ ∼ (1/2) exp ξ , thus ρ = (x2 + y2)1/2 is approximately
(c/2) exp ξ and the modified Mathieu equation (21) reduces to the Bessel equation
ρ2U ′′(ρ) + ρU ′′(ρ) + (k2ρ2 − ν2)U(ρ) = 0, with

ν = kc(b2 − 1
2 )

1/2. (76)

• Then, for kc → 0, we can make the substitution η → ϕ in the ordinary Mathieu equation
(22), which reduces to V ′′(ϕ) + ν2V (ϕ) = 0, and which admits periodic solutions only
for ν = n ∈ N.

In particular, these considerations permit us to recover the asymptotic expansions (14) for the
eigenvalues ν�(ka) (respectively (15) for the resonances) of the circle from the asymptotic
expansions (40) for the eigenvalues b�(kc) (respectively (58) for the resonances) of the ellipse.

4. Concluding remarks

In conclusion, we would like to emphasize the two following points:

• The asymptotic expansions constructed in this paper greatly improve the results one can
obtain from EBK quantization. Indeed, EBK rules provide only the first two terms of
the perturbative series (15) and (58) (see [19] and chapter 4 of [3]). By contrast, EBK
quantization rules have a clear physical interpretation that our approach fails to provide.

• The splitting of resonances considered in this paper is a subtle effect that cannot be
explained in perturbation theory, since it corresponds to an exponentially small term lying
beyond all orders of the perturbative series. However, for reasonably low frequencies,
this phenomenon is numerically significant. It could be easily experimentally observed
in acoustic or electromagnetic elliptic cavities. Such an experiment has been recently
carried out in a microwave annular billiard in order to study chaos-assisted tunnelling [24].
Transmission spectra clearly display the splitting of resonances.
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Appendix A. Asymptotic behaviour of the Airy function and Stokes’s phenomenon

For |z| → ∞, we can write

Ai(z) ≈ 1

2
√
π

z−1/4

[
exp

(
−2

3
z3/2

)
+ iσ(z) exp

(
2

3
z3/2

)]
(A.1)

and

Ai′(z) ≈ − 1

2
√
π

z1/4

[
exp

(
−2

3
z3/2

)
− iσ(z) exp

(
2

3
z3/2

)]
. (A.2)

Here, σ is a parameter which permits us to take into account Stokes’s phenomenon for the
Airy function. It depends on the position of z in the complex plane:

σ(z) =




−1 for arg(z) ∈] − π,−2π/3[

0 for arg(z) ∈] − 2π/3, 2π/3[

1 for arg(z) ∈]2π/3, π [

(A.3)

while σ(z) = ±1/2 on the Stokes lines arg(z) = ±2π/3. Here, Stokes’s phenomenon is
considered as discontinuous. In fact, it has been shown by Berry [23] that the emergence of
the small exponential in (A.1) and (A.2) happens rapidly but continuously at the crossing of
the Stokes lines.

Appendix B. Dominant and subdominant contributions in the equations (34a) and (34b)

By considering only the leading contributions in the uniform asymptotic expansions (29) and
(30), we can write

U ′
−(0, b)U+(ξ, b) = e2iπ/3(kc)2/3ζ(0, b)−1/4ζ(ξ, b)1/4(b2 − 1)1/4(b2 − cosh2ξ)−1/4

×Ai′[e2iπ/3(kc)2/3ζ(0, b)]Ai[(kc)2/3ζ(ξ, b)][1 + O
kc→+∞

(1/kc)] (B.1)

U ′
+(0, b)U−(ξ, b) = (kc)2/3ζ(0, b)−1/4ζ(ξ, b)1/4(b2 − 1)1/4(b2 − cosh2ξ)−1/4

×Ai′[(kc)2/3ζ(0, b)]Ai[e2iπ/3(kc)2/3ζ(ξ, b)][1 + O
kc→+∞

(1/kc)] (B.2)

U−(0, b)U+(ξ, b) = −ζ(0, b)1/4ζ(ξ, b)1/4(b2 − 1)−1/4(b2 − cosh2ξ)−1/4

×Ai[e2iπ/3(kc)2/3ζ(0, b)]Ai[(kc)2/3ζ(ξ, b)][1 + O
kc→+∞

(1/kc)] (B.3)

U+(0, b)U−(ξ, b) = −ζ(0, b)1/4ζ(ξ, b)1/4(b2 − 1)−1/4(b2 − cosh2ξ)−1/4

×Ai[(kc)2/3ζ(0, b)]Ai[e2iπ/3(kc)2/3ζ(ξ, b)][1 + O
kc→+∞

(1/kc)]. (B.4)

By replacing the Airy functions by their asymptotic behaviours for kc → +∞ (see appendix A),
we obtain

U ′
−(0, b)U+(ξ, b) = 1

4π
e−iπ/6(kc)2/3(b2 − 1)1/4(b2 − cosh2ξ)−1/4

× exp[ 2
3kc(ζ(0, b)

3/2 − ζ(ξ, b)3/2)][1 + O
kc→+∞

(1/kc)] (B.5)

U ′
+(0, b)U−(ξ, b) = − 1

4π
e−iπ/6(kc)2/3(b2 − 1)1/4(b2 − cosh2ξ)−1/4

× exp[− 2
3kc(ζ(0, b)

3/2 − ζ(ξ, b)3/2)][1 + O
kc→+∞

(1/kc)] (B.6)

U−(0, b)U+(ξ, b) = − 1

4π
e−iπ/6(kc)−1/3(b2 − 1)−1/4(b2 − cosh2ξ)−1/4
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× exp[ 2
3kc(ζ(0, b)

3/2 − ζ(ξ, b)3/2)][1 + O
kc→+∞

(1/kc)] (B.7)

U+(0, b)U−(ξ, b) = − 1

4π
e−iπ/6(kc)−1/3(b2 − 1)−1/4(b2 − cosh2ξ)−1/4

× exp[− 2
3kc(ζ(0, b)

3/2 − ζ(ξ, b)3/2)][1 + O
kc→+∞

(1/kc)]. (B.8)

We assume b ∈ [1,+∞[. As a consequence, arccoshb ∈ R
+ and the real part of

ζ(0, b)3/2 − ζ(ξ, b)3/2 is positive. Thus, U ′
+(0, b)U−(ξ, b) is exponentially small with

respect to U ′
−(0, b)U+(ξ, b) while U+(0, b)U−(ξ, b) is exponentially small with respect to

U−(0, b)U+(ξ, b).
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[3] Babič V M and Buldyrev V S 1991 Short-Wavelength Diffraction Theory (Berlin: Springer)
[4] Ancey S, Folacci A and Gabrielli P 2000 Exponentially improved asymptotic expansions for resonances of a

elliptic cylinder J. Phys. A: Math. Gen. 33 3179–208
[5] Hamermesh M 1962 Group Theory and its Application to Physical Problems (New York: Dover)
[6] Morse P M and Feshbach H 1953 Methods of Theoretical Physics vols 1, 2 (New York: McGraw-Hill)
[7] Olver F W J 1954 The asymptotic solutions of linear differential equations of the second order for large values

of a parameter Phil. Trans. R. Soc. A 247 307–27
[8] Olver F W J 1974 Asymptotics and Special Functions (New York: Academic)
[9] Ayant Y and Arvieu R 1987 Semiclassical study of particle motion in two-dimensional and three dimensional

elliptic boxes: I J. Phys. A: Math. Gen. 20 397–409
[10] Arvieu R and Ayant Y 1987 Semiclassical study of particle motion in two-dimensional and three dimensional

elliptic boxes: II J. Phys. A: Math. Gen. 20 1115–36
[11] Traiber A J S, Fendrik A J and Bernath M 1989 Level crossings and commuting observables for the quantum

elliptic billiard J. Phys. A: Math. Gen. 22 L365–70
[12] Dietz B and Smilansky U 1993 A scattering approach to the quantization of billiards—the inside–outside duality

Chaos 3 581–9
[13] Smilansky U 1995 Semiclassical quantisation of chaotic billiards—a scattering approach Mesoscopic Quantum

Physics (Les Houches 1994, NATO ASI) ed E Ackermans, G Montambaux, J-L Pichard and J Zinn-Justin
(Amsterdam: North-Holland) pp 373–433

[14] Sieber M 1997 Semiclassical transition from an elliptic to an oval billiard J. Phys. A: Math. Gen. 30 4563–96
[15] Waalkens H, Wiersig J and Dullin H R 1997 Elliptic quantum billiard Ann. Phys., NY 260 50–90
[16] Van Zon R and Ruijgrok Th W 1998 The elliptic billiard: subtleties of separability Eur. J. Phys. 19 77–84
[17] Magner A G, Fedotkin S N, Arita K I, Misu T, Matsuyanagi K, Schachner T and Brack M 1999 Symmetry

breaking and bifurcations in the periodic orbit theory Prog. Theor. Phys. 102 551–98
[18] Keller J B 1958 Corrected Bohr–Sommerfeld quantum conditions for nonseparable systems Ann. Phys. 4 180–8
[19] Keller J B and Rubinow S I 1960 Asymptotic solution of eigenvalue problems Ann. Phys., NY 9 24–75

Keller J B and Rubinow S I 1960 Ann. Phys. 10 303–5 (erratum)
[20] Wolfram S 1996 The Mathematica Book (Cambridge: Cambridge University Press)
[21] Abramowitz M and Stegun I A 1965 Handbook of Mathematical Functions (New York: Dover)
[22] Olver F W J 1954 The asymptotic expansion of Bessel functions of large order Phil. Trans. R. Soc. A 247 328–68
[23] Berry M V 1989 Uniform asymptotic smoothing of Stokes’ discontinuities Proc. R. Soc. A 422 7–21
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